Simulations of continuous and discrete event turbulence

R. Sharman
National Center for Atmospheric Research
Research Applications Program
Boulder, CO

Second AvSP WxAP Annual Project Review Cleveland, Ohio
6 June 2001

Continuous vs. discrete turbulence

Measured vertical acceleration from NASA flight test

Wind derived vs ◆ in-situ algorithm

Continuous turbulence: Use of a von Karman representation

Advantages:

- Case studies show von Karman is a good representation
- Simple analytic formulation
- Only two parameters:
 - (correlation) length scale
 - intensity

Disadvantages:

- Larger scales may be misrepresented
- Computation that produces accurate spatial statistics is not so straightforward

(b) Power spectral density.

Figure 5. Convective case.

From Murrow, "Measurements of Atmospheric Turbulence", NASA CP-2468, 1986

von Karman Turbulence Simulations

 Uses technique of Frehlich, Cornman, Sharman which minimizes errors in structure (correlation) functions

von Karman Turbulence Simulations: Applications to radar detection

 Using von Karman turbulence data with known statistics
 + radar simulation allows evaluation of radar turbulence estimation algorithms

Von Karman gridded 3d fields of velocity and reflectivity

von Karman Turbulence Simulations: Applications to radar detection (cont.)

Q: What simulation grid resolutions are required?

A: It depends!

von Karman Turbulence Simulations: Applications to mesoscale cloud models

- Numerical simulations of clouds are good at resolving larger scales but smaller scales are misrepresented
- But von Karman is a good representation of smaller scales
- So add the two, modulating the von Karman intensities by the large scale resolved motion

Numerical simulations + von Karman subgrid. Merged spectrum

Numerical simulations + von Karman subgrid. Structure function fit and merger

Discrete event simulation

- American Airlines 757
 encountered severe clear-air
 turbulence at 37,000 ft enroute
 SEA-JFK 10 July 1997 2141 Z
 near Dickinson ND
- 12 sec, -.75 + 2.01 g's
- 22 injuries, flight diverted to DEN
- No sigmet in area

Vertical velocity trace from FDR

Discrete event simulation (cont) - radar mosaic

Dickinson, ND discrete event simulation

3 step procedure

- MM5 simulation
 - triply nested grid (27,9,3 km)
 - 35 vertical levels
- Clark-Hall cloud model
 - nested grids,
 highest resolution
 50 m
- Add subgrid von Karman

Dickinson, ND discrete event simulation - MM5 results

Dickinson, ND discrete event simulation - 2d high resolution simulations

- 2d simulations aligned with flow
- High resolution (16m) Clark-Hall cloud model
- Clouds forced by heated surface
- Initialized with Bismarck, ND 0Z sounding

Dickinson, ND discrete event simulation - 2d high resolution simulations: results

Dickinson, ND discrete event simulation - 2d high resolution simulations: results

